The UKRR: data completeness and future initiatives

Charlie Tomson
Chair, UKRR
Completeness

• Co-morbidity at start, Primary Renal Diagnosis, Date of first referral, Ethnicity
 – 5 minutes’ work for a lifetime on RRT
• Letter explaining requirements being sent to all Consultant nephrologists
• Completeness and timeliness reports now being sent to all CDs and systems managers
• Now a legal obligation in England, along with all other items in the dataset
National Renal Dataset

• Professionally agreed data items
 – collection of which will support implementation of the NSF in England
 – Many already collected by UKT or UKRR
 – Most mandatory 2009, some mandatory 2011, some optional; mode of collection not defined
 – Additional items include vascular access, fracture, osteoporosis, PD peritonitis, PD dose, PET results
Current/recent research work

• Socioeconomic status/ethnicity and access to/outcomes of RRT
• The ‘centre effect’ for Ca, PO$_4$, PTH
• Lab variables in the year before start of RRT; CKD5 not on dialysis
• Glycaemic control and outcome
• BP and outcome
• Hb and outcome
Current/recent research work

- Travel time and incidence
- eGFR at start of RRT (EDTA/ERA)
Current improvement work

• Patient-facing information: RA clinical performance measures on NHS Choices
• Commissioner-facing information: interactive mapping
• Renal centre-facing information: Quarterly centre-specific Statistical Process Control charts
• Revision of EDTA-ERA list of primary renal diagnoses (and then comorbidity, cause of death)
National Clinical Audits

- HCC-funded National Kidney Care audit; awarded to Information Centre
 - Transport (minimal UKRR involvement)
 - Vascular access (major UKRR involvement)
- Submission to HQIP (UKRR, East Kent, Information Centre)
 - Management of CKD4/5
Kidney disease

How this information can help you or someone you care for

- Know the early signs of kidney disease.
- Know when to seek treatment and what good kidney disease care is.
- Find out about looking after yourself or someone with kidney disease.

Treating kidney disease

The type of treatment that you receive depends on the stage of your kidney disease and whether or not it is likely to get worse.

What is good kidney disease care?

Effective treatment of kidney disease at all stages can prevent deterioration and save lives. A national review of kidney disease services set out standards that define good kidney disease care. Services should:

- identify people at risk of kidney disease, especially people with diabetes or hypertension and treat them as early as possible to maintain their kidney function,
- give access to investigative treatment and follow-up to reduce the risk of the disease getting worse,
- give people access to good quality information about managing their condition,
- give people information about the development of the disease and their treatment options,
- give access to a specialist renal team, and
- give access to dialysis or transplant services if required.

Find out how your local NHS manages kidney disease care

BS10

Search
Quality of hospital care for people with established renal failure

Haemoglobin concentration
48.8% of people receiving haemodialysis at the renal centre at Southmead Hospital with a haemoglobin level between 10.5-12.5g/dl.

What does this mean?
Haemoglobin is a substance in red blood cells that carries oxygen around the body. A low level of haemoglobin is called anaemia, which leaves people feeling tired. This measure is an indicator of how well a renal centre is managing its patients' haemoglobin levels. The most recent Renal Association recommendation is that haemoglobin levels should be maintained between 10.5 and 12.5 g/dl. The figures displayed relate to patients receiving haemodialysis.

› More information about the haemoglobin concentration

Urea reduction ratio
80.2% people receiving haemodialysis achieving a urea reduction ratio (URR) greater than 65% for the renal centre at Southmead Hospital

What does this mean?
Urea is a waste product produced by the body and is one of the waste products removed through dialysis. The urea reduction ratio (URR) is a measure of the dose of haemodialysis for an individual patient, i.e., how well the dialysis is working. This measure shows the percentage of people receiving haemodialysis that have achieved a URR of 65% or more. A URR that is consistently below 65% is an indicator of poor quality of care.

› More information about the urea reduction ratio
Interactive mapping

CaPhos Metabolism - Prevalent HD >> % Phos 1.1-1.8mmol/l

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Area 1</th>
<th>% Diff</th>
<th>Area 2</th>
<th>% Diff</th>
<th>100.0</th>
<th>50.0</th>
<th>0</th>
<th>50.0</th>
<th>100.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaPhos Metabolism - Prevalent HD</td>
<td>80.0</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Ca 2.2-2.6 mmol/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Phos 1.1-1.8mmol/l</td>
<td>75.0</td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% CaP04 product <4.4mmol/l2</td>
<td>70.0</td>
<td>-7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%PTTH 16-32pmol/l</td>
<td>25.0</td>
<td>-8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CaPhos Metabolism - Prevalent PD

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Area 1</th>
<th>% Diff</th>
<th>Area 2</th>
<th>% Diff</th>
<th>100.0</th>
<th>50.0</th>
<th>0</th>
<th>50.0</th>
<th>100.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb Metabolism - Prevalent HD</td>
<td>87.1</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Hb >= 10g/dl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Hb 10.5-12.5g/dl</td>
<td>51.8</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% ferritin > 100mcg/l</td>
<td>51.8</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Data</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolton</td>
<td>70.37</td>
<td>27</td>
</tr>
<tr>
<td>Bournemouth and Poole</td>
<td>82.36</td>
<td>17</td>
</tr>
<tr>
<td>Bradford and Airedale</td>
<td>56.41</td>
<td>39</td>
</tr>
<tr>
<td>Brent Teaching</td>
<td>42.96</td>
<td>7</td>
</tr>
<tr>
<td>Brighton and Hove City</td>
<td>58.33</td>
<td>12</td>
</tr>
<tr>
<td>Bristol</td>
<td>75.10</td>
<td>29</td>
</tr>
<tr>
<td>Bromley</td>
<td>68.56</td>
<td>22</td>
</tr>
<tr>
<td>Buckinghamshire</td>
<td>61.29</td>
<td>31</td>
</tr>
<tr>
<td>Bury</td>
<td>44.44</td>
<td>9</td>
</tr>
<tr>
<td>Calderdale</td>
<td>64.29</td>
<td>14</td>
</tr>
<tr>
<td>Cambridgeshire</td>
<td>73.08</td>
<td>26</td>
</tr>
<tr>
<td>Camden</td>
<td>57.14</td>
<td>7</td>
</tr>
<tr>
<td>Central Lancashire</td>
<td>50.16</td>
<td>16</td>
</tr>
<tr>
<td>Central and Eastern Cheshire</td>
<td>No Data</td>
<td>No Data</td>
</tr>
<tr>
<td>City and Hackney Teaching</td>
<td>35.71</td>
<td>14</td>
</tr>
</tbody>
</table>

Current dataset chart
Future initiatives

• Closing the Gap application
• Rare Diseases Registries
• Data linkage to Hospital Episode Statistics
 – Hospitalisation
 – Surgical procedures
 – Discharge diagnoses (for co-morbidity)
• Data linkage to Health Protection Agency
 – Bacteraemias
 – C diff infections
• NIHR application
 – Access to RRT including Transplant W/L
Green Nephrology

Renal Association
NHS Sustainable Development Unit
Campaign for Greener Healthcare
British Renal Society
Why bother?

• NHS contributes 18MtCO₂ – 25% of England’s public sector emissions, 3% of total
• Nephrology contributes disproportionately to NHS CO₂ output – travel, consumables, drugs
• Waste reduction saves money
• Carbon taxation is coming
• We lead by example
Where to start?

- SpR training fellowship
 - Change management, Clinical systems improvement, project management, policy development, CO$_2$ footprinting, demonstration projects.

- Collect and spread examples of good practice
 - Waste recycling
 - Heat exchange
 - Water re-use
 - Virtual clinics
The RA will strive to reduce the environmental, social, and economic impacts of all of its activities.

The RA will actively facilitate the exchange of ideas about how to reduce the environmental, social, and economic impacts of the care of patients with kidney disease.

The RA will actively facilitate the exchange of ideas about how to increase the sustainability of care of kidney patients.

The RA will actively facilitate and teach the principles of service improvement.

The RA will work in partnership with all other organisations involved in the care of kidney patients to minimise waste and duplication.

RA sustainability policy?
RA sustainability ‘targets’

- % reduction in travel costs within RA budget for committees and officers
- % of delegates to RA meetings arriving by public transport
- Number of presentations within the RA annual meeting that are available by webcast
- % of meals provided at RA meetings that are vegetarian/local/seasonal produce
- Wasted food at RA meetings
- No bottled water provided at meetings
- Number of UK RA members each year who attend the ASN or ISN (target = progressive reduction as a consequence of people deciding that they can get all they want from the RA meeting)
- Publication of the carbon footprint of the direct activities (travel, office costs at MCI) of the RA followed by a commitment to progressive reduction in carbon footprint
- Publication of the carbon footprint of the RA Annual Meeting (factored for number of delegates)
Thank you

e-mail: charlie.tomson@nbt.nhs.uk